Merit Aid and Competition in the University Marketplace*

James A. Dearden**
Lehigh University

Rajdeep Grewal
The Pennsylvania State University

Gary L. Lilien
The Pennsylvania State University

April 25, 2008

*The authors thank Kalyan Chatterjee, Keith Crocker, Ron Ehrenberg, Roger Geiger and Ron Goettler as well as seminar participants at Cornell University, Lehigh University and Penn State University for thoughtful comments.

**Contact Information: James Dearden, Department of Economics, College of Business and Economics, Lehigh University, 621 Taylor St., Bethlehem, PA 18015; 610-758-5129; jad8@lehigh.edu.
Rajdeep Grewal is available at rug2@psu.edu.
Gary Lilien is available at GLilien@psu.edu.
Merit Aid and Competition in the University Marketplace

April 23, 2008

Abstract

Colleges and universities in the United States increasingly are turning to merit aid offers as a competitive tool to price discriminate and attract better students. Although the total amount of merit aid offered has increased recently, universities vary dramatically in the amount they use to attract top candidates. Intuitively, better (and wealthier) universities, who have better applicants, should offer more merit aid, but the top-ranked universities actually offer far less than do others, and some top schools offer no merit aid at all. We construct a theoretical model to explain this phenomenon and demonstrate that the quality of universities per se does not drive the negative relationship between university quality and merit aid offers but that the negative relationship is driven by: (1) differences among the quality levels of universities that compete for particular candidates and (2) universities’ assessments (valuations) of applicants drive the negative relationship. Top universities offer less merit aid both because they and their immediate competitors show greater quality differences than do high-quality, albeit not top-ranked, schools and because they have access to long lists of excellent candidates. We provide empirical evidence to support key assumptions and findings of our model and discuss the implications of our findings for universities competing in this marketplace.

Keywords: Merit financial aid, university competition, applied game theory, pricing in quality-differentiated oligopoly
Squeezed on one side by state universities, whose tuition is a tiny fraction of what private colleges charge, and on the other by elite private institutions like Yale, Princeton or Amherst, private liberal arts colleges like Allegheny are routinely offering merit aid to students these days. Such scholarships are particularly pervasive in the Midwest, where many liberal arts colleges award them to as many as half or even three-quarters of their students. The result is a college pricing system that can feel as varied, or even mysterious, as buying airplane seats, with students sometimes shopping for the best deal. University officials, defending the era of $30,000-a-year tuitions, speak of a “sticker price” and “discount price” and note that many students do not pay close to the full costs of tuition. So prevalent has the practice become that over the last decade, the amount of money granted in merit scholarships nationally grew to $7.3 billion in 2004 from $1.2 billion in 1994, said Kenneth E. Redd, director of research and policy analysis at the National Association of Student Financial Aid Administrators.

—Finder 2006

Financial aid once went to the poorest kids. Now, grants awarded for academic merit or special talent in sports or the arts are growing faster than grants based on need. States spend 25% of their scholarship money on merit awards, up from 10% a decade ago, while private colleges have gone to a 36% merit share, up from 27%. Private colleges have always used merit aid to round out their orchestras or sports teams, of course. But now they increasingly see merit aid as a way to help them win the ratings-guide race and to “shape” a freshman class by, for example, recruiting science majors. Fifteen states, meanwhile, are using merit scholarships to lure bright in-state students to their local universities. The states calculate that the tactic will motivate high schoolers and raise the rates of those going to college, keep educated young people in-state after graduation, and make themselves more attractive to employers. Florida and Georgia are finding their merit-aid programs hugely expensive, but politically difficult to scale back. Even so, another half-dozen states are looking at their own merit plans.

—Kronholz 2005

1. Introduction

The quotes above reflect the vibrant market for higher education, in which universities compete for students, faculty, prestige, and financial resources. The widely cited university rankings, such as the general undergraduate rankings by U.S. News and World Report’s (USNews) annual “America’s Best Colleges” feature and The Wall Street Journal, provide highly visible scorecards to summarize the results of that competition. The salience of these rankings makes it imperative for universities to adopt strategies to improve their ranks. (See Monks and Ehrenberg, 1999, Pope, 2005, and Griffith and Rask, 2007, for evidence of the important and expected impact of changes in USNews ranks on yield, i.e., matriculation rates.) One of the most striking facts about the university ranking race is the increasing emphasis on the tactical use of merit aid as a price discrimination tool: The amount of money granted in merit scholarships nationally grew to $7.3 billion in 2004 from $1.2 billion in 1994 (Finder, 2006).
As the university marketplace grows ever more competitive, merit aid is becoming a potent marketing tool that universities are using to price discriminate and attract better students. (Differing merit aid offers mimic the practice of third-degree or multimarket price discrimination.) Kane (1999, p. 80-81) makes an interesting point about merit aid and price discrimination:

In many industries, differing prices for different buyers of the same product are taken as a sign of market power. However, in higher education, such price discrimination is a result of the declining market power of colleges. Competition tends to force an institution’s prices closer to its costs. But because each student adds a different amount to the value of his or her classmates’ degrees, the net cost of educating each student is different even if the cost of the bricks and mortar is the same.

To attract top students, schools often promote merit aid programs in which the award amounts depend on the high school grades and SAT scores of applicants. Presbyterian College (South Carolina), for example, offers: Dillard Elliott Scholarships (annual amount = $7,700) for applicants who earned 1100 SAT/24 ACT and a high school 3.0 GPA; Belk Scholarships (annual amount = $11,700) for applicants who earned 1200 SAT/27 ACT and high school 3.5 GPA; and Highlander Scholarships (annual amount = $15,450) for applicants who earned 1300 SAT/29 ACT and high school 3.7 GPA (see http://www.presby.edu/admissions/tuition2.html). According to van der Klaauw, (2002) and Avery and Hoxby, (2006) such merit aid offers, conditional on applicant quality increase the matriculation rates of top candidates.

With the increased popularity of rankings publications and the role that student quality plays in them, the substantial jump in merit aid offers seems easy to explain. For example, though Fallows (2003) is critical of the rankings publications, he admits that rankings have promoted an educational meritocracy in which the best students, in contrast with lower-quality legacy students (whose relatives have attended the university), are more likely to be accepted by the top universities. Thus, universities seemingly should offer financial enticements to attract the best students (see Rothschild and White 1995); in turn, the best students (who tend to apply to the top universities) should receive the most merit aid (as depicted by the downward sloping line in Figure 1).
However, the best students do not necessarily receive the most merit aid. In the university marketplace, these students tend to be matched with the top universities, and top-ranked universities actually offer less merit aid than other good, highly-ranked, albeit not top-ranked, universities (Geiger 2004). See Figure 1 contrasts the the actual, upward sloping link between university rank and merit aid offer with the intuitive, downward sloping line. That is, rather than the top universities offering more merit aid to attract these top students, they actually offer less. (See also supporting data in the Appendix, Table A1.) Indeed, some top-ranked universities (including all eight Ivy League schools) offer very little or no merit aid. Therefore, the best students who choose to attend Ivy League universities do so largely without the benefit of merit aid, although the Ivies offer generous need-based aid packages. (Harvard’s recent increases in need-based aid are described at

[Insert Figure 1 about here]

If the best students should receive more merit aid, the empirical observation that top universities offer less seems puzzling. The competition among the very top universities to attract very high achieving high school seniors should be at least as intense as the competition among other highly selective schools to attract simply high achieving high school seniors. But such intense competition is not reflected in merit aid offers.

The conjecture that merit aid should be decreasing in university quality is consistent with recommendations in the pricing literature (see Anderson, de Palma and Thisse, 1992, Nagle and Holden 2002, and Bronnenberg, 2008), which suggests that lower quality brands and products should offer lower prices. However, better-ranked universities charge approximately the same (list) prices as do more poorly ranked schools. Empirically, the dispersion in list price tuition among universities is much less than the dispersion in merit aid offers, so the relative price paid by students is determined largely by merit aid offers. For example, the list price 2005–06 tuition of Harvard University is $32,097, whereas the list price tuition of Vanderbilt University is $31,700. Harvard offers no merit
aid, whereas 11% of Vanderbilt students receive merit aid, and the award per student averages $2,309 (Table A1). For the few targeted, best applicants from its candidate pool, Vanderbilt clearly offers more merit aid than does Harvard, but for those students who receive no merit aid, the prices of these two universities are virtually identical.

To explain the empirical puzzle that higher quality universities offer less merit aid, we construct a game-theoretic model in which each university’s objective in managing its merit aid is to attain the best possible USNews rank. In the game, quality-differentiated universities set merit aid offers on a candidate-by-candidate basis. In calculating optimal merit aid offers, we assume each university determines: (1) its valuation of each candidate from that candidate's SAT scores, class ranks, and so forth, (2) the competitors to which the university believes the student has applied and been accepted; (3) the university's beliefs about the merit aid offers of the universities that have accepted the candidate; and (4) each candidate’s preferences. We then investigate how the equilibrium merit aid offered to each applicant depends on the qualities of the universities engaged in the competition to attract that candidate, the dispersion of qualities among competitors, and the universities’ valuation of the applicant.

A critical ingredient in our model is the conjecture that the university market is not one large marketplace but rather a series of “quality-local” markets, each of which contains universities of similar quality or rank. In these quality-local markets, the universities at each quality range compete almost exclusively with others in the same range. For example, the Ivy League universities Harvard and Yale compete, and the Patriot League universities Colgate and Bucknell compete, but Harvard and Colgate largely do not compete for the same students. In the context of our model, one set of parameters describe the Ivy environment and another set describe the Patriot environment. To move from one quality-local competitive environment to another, we change the model parameters and then examine the effect of the changes on the equilibrium merit aid offers.
We might expect that the Ivy League schools would behave toward their target students much the same way that the Patriot League schools do in competing for the pool of talented, albeit not top, candidates (a horizontal line in Figure 1). Because the Ivies compete for top students, we might even expect them to offer more merit aid. However, the negative correlation between merit aid and quality suggests the marketplace of top universities differs fundamentally from the marketplace of high-quality, albeit not top, universities. We offer empirical evidence for two differences between top ranked universities and other relatively lower-ranked high-quality universities. First, the dispersion of competitor quality (i.e., how close in quality universities engaged in competition are) correlates positively with the quality of a university. That is, the dispersion of the quality among top universities is greater than that of relatively lower ranked high-quality universities. Second, top universities reject many students who are close in quality to those whom they accept. Therefore, these stronger alternative options minimize top universities’ incentive to offer merit aid. In our theoretical model, we demonstrate that these two differences drive the result that top universities offer less merit aid.

We proceed as follows: In Section 2, we specify our model and in Section 3 develop the general theoretical results. In Section 4, we provide empirical validation of the two differences between top ranked universities and other relatively lower-ranked high-quality universities. We then demonstrate that these two key differences drive the result that equilibrium merit aid offers are decreasing in the quality levels of the universities engaged in quality-local competition. In Section 5, we offer empirical evidence that merit aid offers are decreasing in university quality. Finally, in Section 6, we discuss our model, results and their theoretical and practical implication.

2. The Model

While the competition among universities tends to be among universities of similar quality levels, it certainly is possible that applicants strongly consider universities of very different quality levels. Thus, we construct a model that handles competition among universities that are of similar, and even identical, quality levels, as well as universities of very different quality levels. In general, in the
competition to attract a particular applicant, one university is ranked highest, another is ranked lowest and the remainders are in between.

Our model accommodates this form of high/middle/low competition by considering three schools (1, 2, and 3) that represent the three quality levels, respectively. With three universities, we examine how increased quality dispersion (i.e., an improvement in the quality of university 1 and/or a worsening of quality of university 3) affects the optimal merit aid offers.

We sketch the sequence of a university’s admissions and merit aid decision processes in Figure 2. We assume each university receives applications and evaluates the candidates, then determines the optimal merit aid it will offer each candidate, should the university choose to accept him or her. Finally, the applicant collects all offers from universities and decides which to attend.

[Insert Figure 2 about here]

2.1. The University’s Decision Problem

Although the decision process about how much merit aid to offer is identical for all three universities, they may make different merit aid decisions. Before university i, $i \in \{1, 2, 3\}$, makes its merit aid offers, it

- Considers the candidates’ quality attributes (e.g., high-school class rank, SAT score) and categorizes candidates (i.e., values them monetarily) according to those attributes;
- Formulates its belief about the merit aid offers made by its competitors (in our analysis, consistent with equilibrium offers); and
- Models the candidates’ utility functions and choice probabilities.

Candidate Quality Attributes and Acceptance. Each university partitions its acceptable applicants into two groups: desirable candidates, for whom the university must compete, and safety candidates, whom the university attracts, at full tuition, with probability 1. We let g denote a representative desirable candidate. The set of desirable candidates that university i accepts is M_i, and the number of
desirable candidates in set M_i is m_i. The university uses its safety candidates to fill the slots that it cannot fill with desirable candidates. Let m_{io} denote the number of safety candidates that university i must accept to fill its class, z_i denote university i’s number of slots, v_{ig} denote the value of candidate g to university i, and v_{io} denote the value to university i of one of its safety candidates. We assume $v_{ig} > v_{io}$.

Competitors’ Merit Aid Offers. In our equilibrium analysis, each university believes that its competitors extend Nash equilibrium offers. (As is standard in these types of analyses, the Nash equilibrium offers are common knowledge.) We let y_{ig} denote university i’s merit aid offer to candidate g. Note that we can interpret $y_{ig} > 0$ as merit aid and $y_{ig} < 0$ as a tuition premium (i.e., a contribution to the university required to secure admission, an increasingly common phenomenon: Golden, 2006). In our analysis, we do not examine a university’s determination of its list price tuition but focus on the discounts (i.e., merit aid) it offers to desirable candidates. Effectively, we assume that the three universities set the same list price tuition; column 3 in Table A1 provides rough support for this assumption.

University’s Model of Candidates’ Utility Functions and Choice Probabilities. Avery and Hoxby (2006) report that among high-achieving university applicants, three important factors drive attendance decisions: the qualities of schools, the merit aid offers, and the value of the match in the candidate’s mind between each university and the candidate. Thus, we model the universities’ utility as a function of these three variables: x_i denotes the quality of the university (e.g., rank, graduate school placements), y_{ig} is the merit aid the university offers the candidate, and ϵ_i represents the internal (and unobserved) value of the match between the candidate and the university. We assume that all candidates have the same value x_i for university i, known with certainty. In terms of the popular rankings, university i’s quality x_i could be some form of a moving average of previous years’ ranks.
In our model, we assume that the students in the year of our analysis who choose to attend university \(i \) do not affect \(x_i \), because most students base their matriculation decisions on current and past student bodies, not on those who choose to attend during the current round of admissions. We also assume each candidate’s match value \(\varepsilon_i \) is private to the candidate and independent across candidates and thus captures uncertainty for the university. We assume that \(\varepsilon_i \) has a double exponential distribution with mean zero and standard deviation proportional to a parameter \(\mu > 0 \). We model a university’s estimate of each candidate’s utility of university \(i, i \in \{1,2,3\} \), as:

\[
 u_{ig} = x_i + y_{ig} + \varepsilon_i .
\] (1)

In the candidate’s choice problem, the candidate has chosen to apply to and been accepted by universities 1, 2, and 3. Thus, when the candidate determines which university to attend, his or her consideration set has already been determined.

We seek a candidate (consumer) choice model that satisfies the following conditions. First, the candidate must choose one and only one university from his or her consideration set. Next, that choice should depend on the qualities of the universities as well as the candidate’s idiosyncratic and private preferences. Finally, to admit analytical tractability, with the consumer choice model embedded in the analysis of merit aid competition we require that a unique equilibrium to the pricing game exist. The logit choice model satisfies these requirements, and is the only discrete choice model for which a unique price equilibrium has been show to exist for the asymmetric quality case (see Anderson et al., 1992, Caplin and Nalebuff, 1991, and Milgrom and Roberts, 1990). Furthermore, the candidate’s choice specified as a multinomial logit model is consistent with empirical work on the university candidate attendance decision by Avery et al. (2005) and Avery and Hoxby (2006).
By applying, the candidates have expressed their interest in going to college, so we assume all candidates attend a university. Thus, the probability that candidate g chooses to attend university i, $q_i = \text{prob}\{u_i \geq u_j, \forall j \neq i\}$, is

$$q_i(x_1 + y_{1g}, x_2 + y_{2g}, x_3 + y_{3g}) = \frac{\exp((x_1 + y_{1g})/\mu)}{\sum_{j \in \{1, 2, 3\}} \exp((x_j + y_{jg})/\mu)}.$$

(2)

Because university 1 is (weakly) the best of three universities and university 3 is (weakly) the poorest, $x_1 \geq x_2 \geq x_3$. In our analysis, we examine the dispersion of the quality of the universities and, for the three-university case, define an increase in dispersion as an increase in both $(x_1 - x_2)$ and $(x_2 - x_3)$.

2.2. University’s Expected Score Function, Decision Problem, and Nash Equilibrium

Most university rankings in the popular press rely on multi-attribute models. The USNews rankings are based on 15 different university attributes, such as university acceptance rates, graduation rates, faculty salary, alumni giving, and so forth. Some combination of these attributes lead to the overall rank of universities (see http://www.usnews.com/usnews/edu/college/rankings/about/index.php).

In our analysis, we develop a two-attribute model that retains the essential features of the popular press ranking systems. We use the two generic attributes – prestige and resources – that subsume the main attributes of popular press publications, such that resources comprises, for example, financial resources, faculty resources, and alumni giving. The attribute scores use monetary values so that we may characterize the opportunity cost of increased merit aid spending in terms of reduced resources. In our model, as in the actual popular rankings, the university receives an overall score that is a weighted sum of the attribute scores. We assume that each university’s objective in setting merit aid offers is to maximize its expected overall score.

University i’s prestige score depends on the students who attend the university and their monetary value to the university. University i’s expected prestige score reflects the sum across students that the
university accepts for admission with regard to their valuation multiplied by the probability they will attend the university:

\[
\text{Expected prestige score} = \sum_{g \in M} v_{ig} q_i(x_i + y_{i,g} \ldots) + m_{io} v_{io}.
\] (3)

The expected resource score is its budget \(B_i \) minus its expected merit aid expenditures:

\[
\text{Expected Resource Score} = B_i - \sum_{g \in M} q_i(x_i + y_{i,g} \ldots) y_{ig}.
\] (4)

In the course of its acceptance decisions, the university must fill its class in expectation only, and to do so, it must accept safety candidates. That is, university \(i \)'s acceptance decisions must satisfy

\[
\sum_{g \in M} q_i(x_i + y_{i,g} \ldots) + m_{io} = z_i.
\] (5)

University \(i \) attaches weight \(w_p \) to its prestige score and weight \(w_r \) to its resources score. In USNews the weights of the aggregated prestige attributes (i.e., peer assessment, graduation and retention and selectivity) is 0.65, and of the aggregated resources attributes (i.e., faculty resources, financial resources and alumni giving) is 0.35. While we could assume these numerical values, our results are robust to all sets of weights. With the generic weights, \(w_p \) and \(w_r \), university \(i \)'s expected overall expected score, \(E[s_i] \), is

\[
E[s_i] = w_p \left(\sum_{g \in M} v_{ig} q_i(x_i + y_{i,g} \ldots) + m_{io} v_{io} \right) + w_r \left(B_i - \sum_{g \in M} q_i(x_i + y_{i,g} \ldots) y_{ig} \right).
\] (6)

University \(i \) then determines its optimal merit aid offer, \(y_{ig}^* \), for each candidate \(g \), to maximize its expected score from expression (6), subject to its class size requirement in equation (5). The solution to this optimization program, \(y_{ig}^* \left(x_i, x_j + y_j, x_k + y_k \right) \) for each candidate \(g \), is university \(i \)'s optimal merit aid offer, a function of the sum of each competing university's quality and merit aid offers.

We examine the Nash equilibrium of the merit aid offer game to attract a particular candidate, given that the candidate has been accepted by all three universities. In the Nash equilibrium, each
3. General Results

We begin by characterizing university i’s optimal merit aid offer to each candidate g, y_{ig}^*. Next, in Lemma 1, we establish the conditions in which top universities are more likely to attract candidates (i.e., $q_1 > q_2 > q_3$). In Theorem 1, we examine the effect of an increase in the quality dispersion of the three universities on the equilibrium of merit aid offers. In Lemma 2, we demonstrate that the relative, not absolute, qualities of universities affect their optimal merit aid offers. Finally, in Theorem 2, we analyze the effect of a change in a university’s net valuation of a candidate on equilibrium merit aid offers.

From the first-order conditions of maximizing university i’s expected score in expression (6) subject to the school’s capacity constraint in equation (5), we find that university i’s optimal offer to candidate g satisfies

$$y_{ig}^* \left(x_i, x_j + y_{ig}, x_k + y_{ig} \right) = \frac{w_p}{w_r} \left(v_{ig} - v_{io} \right) - \frac{\mu}{1 - q_i \left(x_i + y_{ig}^*, x_j + y_{ig}^*, x_k + y_{ig}^* \right)}.$$ (7)

Because the logit formulation ensures that each school’s constrained expected score function (found by substituting (5) into (6)) is strictly quasi-concave, expression (7) constitutes necessary and sufficient conditions for the optimal merit aid offer.

Optimal pricing, as expressed in (7), states that the optimal merit aid offer equals the university’s net monetary valuation of candidate g $\left(w_p/w_r \right) \left(v_{ig} - v_{io} \right) > 0$, less the strategic pricing element $-\mu/(1 - q_i) < 0$. Examining $\mu/(1 - q_i)$, we note that the optimal merit aid offer decreases with the probability of matriculation, q_i. Therefore, ceteris paribus, if a university has a greater probability of attracting a candidate, the university offers less merit aid. These two terms—the net dollar value of the candidate and the strategic pricing element—form the basis of our analysis.
In our logit choice model, two factors – university quality and merit aid – affect the probabilities candidates choose particular universities. A reasonable condition our model should admit is that university 1 should have the highest probability of attracting any candidate and university 3 the lowest.

Lemma 1. In equilibrium, \(q_1 > q_2 > q_3 \) if and only if

\[
x_1 + \frac{w_p}{w_r}(v_{1g} - v_{1o}) > x_2 + \frac{w_p}{w_r}(v_{2g} - v_{2o}) > x_3 + \frac{w_p}{w_r}(v_{3g} - v_{3o}).
\]

(8)

Proof. See Appendix A2.

Lemma 1 states that for university 1 to have the greatest acceptance probability and university 3 the smallest, the quality differences, as measured by \(x_i \), must be greater than the differences in the net benefits of the accepted candidates, measured by \((w_p/w_r)(v_{ig} - v_{io}) \). In Section 5, we offer empirical support for the conditions in expression (8): For the very top universities, the quality difference between two universities \((x_i - x_j) \) is likely to dwarf the difference between the net benefits of accepted candidates \((w_p/w_r)(v_{ig} - v_{io}) - (w_p/w_r)(v_{ig} - v_{io}) \).

Our first key finding is that, in a quality-local market, the sum of merit aid offers by competitors is decreasing in the quality of the top school and is increasing in the quality of the poorest school. That is, more quality dispersion among the quality-local competitors (i.e., the best school becomes relatively better and the worst school becomes relatively worse) means average merit aid offers decrease.

Theorem 1. Assuming (8) holds, in equilibrium, the average equilibrium offer to candidate \(g \) by the three universities, \((y_{1g}^* + y_{2g}^* + y_{3g}^*)/3 \), is decreasing in the quality of the top university, \(x_1 \), and is increasing in the quality of the worst university, \(x_3 \).

Proof. See Appendix A2.

The Theorem 1 result follows from the property that changes in university quality cause top universities to make greater adjustments to their merit aid offers than those made by poorer ones. That
is, *ceteris paribus*, a university’s optimal merit aid offer is strictly decreasing and strictly concave in its own quality (see Lemma A1 in Appendix 2). As university 1 improves or university 3 worsens in quality, the decrease in university 1’s optimal merit aid offer is greater than the increase in university 3’s. Hence, the average merit aid offer decreases with the increase in the dispersion of university quality.

To understand the greater adjustments by higher-quality universities, we examine the relationship between the quality of a school and its strategic pricing element $\mu/(1-q_i)$. The strategic pricing element relates to the merit aid elasticity of demand:

$$\left(\frac{\partial q_i}{\partial y_i}\right)\left(\frac{y_i}{q_i}\right) > 0,$$

which in the logit model is

$$\left(\frac{\partial q_i}{\partial y_i}\right)\left(\frac{y_i}{q_i}\right) = \left(\frac{(1-q_i)}{\mu}\right)y_i.$$

From (10), we can describe the strategic pricing element, $\mu/(1-q_i)$, in terms of the merit aid elasticity. Specifically, *Strategic pricing element = 1/(merit-aid elasticity) * merit aid offer*. Also, from (10), we see that the merit aid elasticity becomes more inelastic as the probability a candidate chooses a university increases. Because candidates are more likely to choose to attend better universities, these universities face more merit aid inelastic demand. Hence, as quality improves, the university has a greater incentive to decrease its merit aid offer to a particular candidate. With this greater incentive, the university’s optimal merit aid offer, *ceteris paribus*, not only decreases in quality but also decreases at an increasing rate.

As actual practices demonstrate, universities actively estimate price elasticities to price discriminate, such that “Grants no longer are based overwhelmingly on a student’s demonstrated financial need, but also on his or her ‘price sensitivity’ to college costs, calculated from dozens of factors that all add up to one thing: how anxious the student is to attend” (Stecklow 1996, p. A1).
The dispersion of competitor quality among universities engaged in quality-local competition correlates positively with the quality of the universities (as we show in the next section). Thus, our Theorem 1 result explains that the dispersion of competitor quality, not the absolute quality of the university and its competitors, drives the negative relationship between university quality and merit aid offers.

Lemma 2 extends our investigation of the relationship between university quality and merit aid offers.

Lemma 2. Relative, not absolute, qualities affect a university’s optimal merit aid offers. Formally, for two sets of university quality profiles \((x_1, x_2, x_3)\) and \((\hat{x}_1, \hat{x}_2, \hat{x}_3)\), ceteris paribus, if \((x_i - x_j) = (\hat{x}_i - \hat{x}_j)\), for each \(j\), then for university \(i\),

\[
y^*_i(x_i, x_j + y_j, x_k + y_k) = y^*_i(\hat{x}_i, \hat{x}_j + y_j, \hat{x}_k + y_k). \tag{11}
\]

Proof. See Appendix A2.

Lemma 2, in combination with Theorem 1, implies that university quality per se does not cause top universities to offer less merit aid; rather, the dispersion of the quality of quality-local competitors drives the relationship. Suppose the only differences between competition among Harvard, Yale, and Princeton for a top candidate and competition among Colgate, Bucknell, and Lafayette for a good candidate were the quality levels of the universities. To generate equilibrium merit aid offers by the Ivies for their top candidate that are lower than the equilibrium merit aid offers by the Patriots for their good candidate, the relative qualities of the Ivies must differ from the relative qualities of the Patriots. In this sense, the higher quality of the Ivies does not drive their lower merit aid offers.

Our second key finding is that in a quality-local competition, universities offer less merit aid if the candidates they reject tend to be close in quality to the candidates they accept. In Section 4, we offer evidence that \(v_{ig} - v_{io}\) is decreasing in quality. Top universities, with their better alternative options
(i.e., better safety candidates), have less need to attract their top candidates and therefore make smaller
erit aid offers than lower ranked universities.

Theorem 2. Each equilibrium offer \((y_1^*, y_2^*, \text{ and } y_3^*)\) increases with university i’s net monetary
valuation of candidate \(g_i (v_{i,g} - v_{i,c})\).

Proof. See Appendix A2.

4. Quality-Local Competition

We first show that competition among colleges and universities is quality-local. Next we compare
two quality-local markets in which markets differ by the quality differences of the universities and then
compare two quality-local markets in which markets differ by the distributions of the universities’
values of the candidates.

4.1. Evidence that Competition is Quality Local

Our thesis that greater dispersion of quality among quality-local competitors drives lower
equilibrium merit aid offers relies in part on the assumption that competition is quality-local, i.e., that
higher education is partitioned into smaller markets defined not only by geography and university
specialization but also by quality (Winston 1999 and Grewal, Dearden, and Lilien 2006).

When universities compete for rankings, each competes most closely with the universities directly
above and directly below it in rank. Depending on the quality of the applicant to these universities, a
particular university may be the top school a candidate is considering, rank in the middle, or represent
the lowest quality (i.e., “safety”) school. As Winston (1999, pp. 80-81) states,

> Competition among schools appears to be limited to overlapping “bands” or segments of similarly
wealthy schools within the hierarchy…. As one observer puts it, “A school competes with the ten
schools above them and the ten schools below them, even if there are more than 3,300 in the country.”

The matriculation decisions of applicants accepted by Lehigh University support Winston’s view.

Lehigh University, ranked 33rd in 2007 USNews, surveyed the population of applicants accepted
by the university for the fall 2005 (response rate 88.4% for matriculating students and 79.7% for non-
matriculating students). (Source: Lehigh University, Office of Institutional Research, October 2005). The survey asked, among other questions, applicants to list up to three colleges or universities for which they have been accepted. From the survey responses, Lehigh University constructed a table of its competitors by totaling the number of survey responses that list a given school and then ranking the schools by these totals. In this ordering, Patriot League schools, Bucknell University and Lafayette College, are top-5 Lehigh competitors.

For the fall 2005 semester, 1223 students matriculated at Lehigh University. Of these 1223 students, 83.7% of those who responded to the survey reported that they were also accepted by a top-25 competitor. Table 2 reports information about these top-25 competitors. Table 3 reports information about Lehigh’s 26-50 competitors (excluding one competitor which does not report SAT scores). In Table 2, the first column lists SAT score ranges. The second column reports the number of top-25 schools for which the 75th percentile of the school’s freshman class SAT score ordering falls in the listed range. (Lehigh’s 75th percentile is 1400.) The third and fourth columns report information about applicants for whom Lehigh offered merit aid (either $15,000, $10,000, or smaller discipline-specific awards). Column 3 reports the number of Lehigh-merit-aided students who chose to attend Lehigh or one its top-25 competitors. Column 4 reports the ratio of the number of students in column 3 who chose to attend Lehigh to the number of Lehigh-merit-aided students who chose to attend Lehigh or one its top-25 competitors. Columns 5 and 6 report information about students for whom Lehigh did not offer merit aid.

[Insert Tables 2 and 3 about here]

All of Lehigh University’s top-25 competitors have 75th percentile SAT scores between 1280 and 1480. In contrast, all of the top-12 USNews universities have 75th percentile SAT scores that are 1490 or greater. In this sense, Lehigh’s competition is quality-local. Hence, Lehigh is not offering merit aid to pull applicants from the USNews top-10 universities. Rather, it is offering merit aid to pull applicants from its quality-local competitors.
Even very top universities may not be close competitors. For example, according to the choice probabilities in Avery et al. (2005), Harvard effectively does not compete with Duke: a candidate accepted by Harvard and Duke chooses to attend Harvard with 0.97 probability. In this case, the higher quality of Harvard does not drive the result that Harvard offers no merit aid and Duke does. Rather, in its quality-local competition for the best students, Harvard and its competitors, which display wide quality variations, offer minimal merit aid, because doing so would not provide them incremental differentiation. Duke and its quality-local competitors (e.g., Georgetown, Northwestern), very good schools whose qualities are relatively close, offer substantial merit aid to distinguish themselves in their close competition for students.

Hence, competition for rankings is quality local: Lehigh, Lafayette and Bucknell compete; Duke, Georgetown and Northwestern compete; and Harvard, Yale and Princeton compete. The evidence that merit aid is prevalent in the first two of these three quality-local competitions and not in the third indicates that the quality-local competition among the Ivies is fundamentally different from the quality-local competitions among other high-quality universities.

4.2. Quality and Quality Dispersion

We offer two types of evidence to show that quality dispersion among quality-local competitors correlates positively with quality itself. First, Avery et al. (2005), in building their revealed preference ranking of colleges and universities, use survey data in a multinomial logit analysis of the applicant choice problem (i.e., faced with a list of schools that have accepted the candidate, he or she must choose). Their survey of 3,240 high-achieving students from the class of 2004 includes questions about the schools that accepted them, the school they chose to attend, and financial aid offers. The probability that candidate g attends university i, if accepted by the set of S_g universities, is

$$q_{ig} = \frac{\exp \left(\theta_i + x_{ig} \delta \right)}{\sum_{j \in S_g} \exp \left(\theta_j + x_{ij} \delta \right)}.$$

(11)
In this specification, “θ’s embody all characteristics that do not vary within each college: whether it is a liberal arts college, the faculty, a rural as opposed to urban location, and so on” (Avery et al., 2005, p. 15), whereas the characteristics vector x_{ig} varies among admitted students (e.g., legacy status, merit aid). With a Markov chain Monte Carlo simulation in which one school’s θ is greater, they find that for top schools, a higher-ranked school’s θ is greater than that of a lower-ranked school in most of the posterior draws. For example, in the competition between Harvard and Yale, Harvard wins in 98% of the draws; in the competition between Yale and Princeton, Yale wins in 90% of the draws. That is, Harvard’s desirability is distinct from either Yale’s or Princeton’s. In terms of the multinomial logit model, the perceived quality difference dominates the idiosyncratic element of the utility function. For lower-ranked but still selective schools, the idiosyncratic element of the utility function plays a greater role. For example, in the competition between University of Chicago and Johns Hopkins, Chicago wins in 51% of the draws; in that between Johns Hopkins and University of Southern California, Hopkins wins 69%. Thus, “As a rule, the lower one goes in the revealed preference ranking, the less distinct is a college’s desirability from that of its immediate neighbors in the ranking.” (Avery et al. 2005, p. 27)

Second, The Wall Street Journal university ranking, which ranks schools by the placement of graduates in top-five business, law, and medical schools, shows that the distribution of the rank-order is heavy tailed (see Table A2). At the top of the 2004 rankings, Harvard placed 21.49% of a recent class in top-five business, law, or medical schools, Yale 17.96%, Princeton 15.78%, and Stanford 10.70%. In dropping only from first to fourth place, the placement rate falls by half. However, for schools ranked 21–24, placement rates are virtually identical — roughly 3.6 percent.

The dispersion in terms of top-five professional school placement rates is so great for top universities yet so close for good universities that it follows a Pareto (Power Law) distribution. In the Pareto distribution of placement rates, small placement rates are extremely common, whereas large
rates are extremely rare. For a placement rate, ρ, the cumulative distribution function of the power law distribution is

$$\text{Prob}(p \leq \rho) = F(\rho) = 1 - \left(\frac{c}{\rho} \right)^{\alpha}. \quad (12)$$

The estimated coefficients of the power law distribution are $\hat{c} = 0.0164$ and $\hat{\alpha} = 1.2194$ for the 50 universities in *The Wall Street Journal* ranking, as we show in Table 1. Table 1 also contains results from the Anderson-Darling and Lilliefors tests for normality, which shows that we reject the hypothesis that the distribution of placement rates is normal. Figure 3 contains the estimated and actual distributions of ordered placement rates.

[Insert Table 1 and Figure 3 about here]

The quality dispersion at top universities is greater than that of very good schools. On the basis of Avery et al.’s (2005) choice probabilities and professional school placement rates, we postulate that the perceived and actual quality differences are quite large among top schools.

Recognizing that the quality differences among local competitors are increasing as the quality of competitors improves, we compare the equilibrium merit aid offers in two different quality-local competitions, where we use the superscripts I and P to denote the two quality-local competitions. We assume these competitions differ only by the quality differences among local competitors.

Assumption 1: **Comparison of Quality Dispersions.** The dispersion of quality among the I universities is greater than the dispersion among the P universities: $(x'_1 - x'_2) > (x'^I_1 - x'^I_2)$ and $(x'_2 - x'_3) > (x'^I_2 - x'^I_3)$.

We now state a corollary of Theorem 1 that shows that the greater quality dispersion among the I universities drives the average of their merit aid offers to be lower than the average of the P universities.
Corollary 1. Consider two quality-local competitions, I and P, each with three universities. Suppose in each competition that (8) holds. Furthermore, to isolate the effect of university quality on equilibrium merit aid offers, assume candidate g^I in competition I and candidate g^P in competition P, for each $i \in \{1, 2, 3\}$, satisfy $(v^I_{ig} - v^P_{ig}) = (v^P_{ig} - v^P_{ig})$. If Assumption 1 is satisfied, then

$$(y^P_{1g} + y^P_{2g} + y^P_{3g}) < (y^P_{1g} + y^P_{2g} + y^P_{3g}).$$

Proof. Follows directly from the proof of Theorem 1.

4.3. University Quality and Applicant Quality

For the top universities, the quality of the candidates they accept is close to the quality of the candidates they reject. As *The Wall Street Journal* reports, “Every year, [the Ivies] reject many valedictorians and students with perfect SAT scores” (Golden 2003, p. A1). Advice from the *Washington Post* to college applicants indicates that “Yale University accepted 8.6 percent of its applicants this year, an Ivy League low. Selective college admissions officers admit that they reject or wait-list many students who are just as good as the ones they accept. If the school is short on engineering majors or Idaho residents or piccolo players, applicants with those characteristics will be accepted. The rest will have to go elsewhere” (Matthews 2006, p. A14). Princeton University, recognizing that it rejects high-quality candidates, has increased the size of its undergraduate population by 11%, in defense of which University President Shirley M. Tilghman stated, “We are turning away students who we know would be absolutely stellar Princeton students, and it's just because of our lack of spaces in the class” (Hechinger 2006, p. B1).

Recognizing that the differences that a university places on the values of its candidates is decreasing in the quality of the university, we again compare the equilibrium merit aid offers in two different quality-local competitions: I and P. In this case these competitions differ only by the differences in the values that each particular university places on its candidates. We use the notation...
\(|g^I| \) to denote the \(g^\text{th} \) best candidate who has applied to an \(I \) university, and \(|g^P| \) to denote the \(g^\text{th} \) best candidate who has applied to a \(P \) university. Again we state a key assumption.

Assumption 2:

(i) Both within the \(I \) and the \(P \) competitions, the universities have identical ordinal rankings of the candidates by their monetary values.

(ii) For the \(g^\text{th} \) best candidate in each of two local competitions, \(|g^I| = |g^P| \), and for each university \(i \), the \(I \) candidate has a lower net value than does the \(P \) candidate, i.e., for each

\[
i \in \{1, 2, 3\}, \quad \left(v_{i|g^I|}^I - v_{i|g^P|}^I \right) < \left(v_{i|g^P|}^P - v_{i|g^P|}^P \right).
\]

Corollary 2 shows that the equilibrium merit aid offers are smaller for the local competition with the smaller difference between the monetary values of the attractive and safety candidates:

Corollary 2. Consider two local competitions, \(I \) and \(P \), each with three universities. To isolate the effect of candidate quality on equilibrium merit aid offers, assume relative university qualities between the two local competitions satisfy

\[
(x_1^I - x_1^I) = (x_1^P - x_1^P) \quad \text{and} \quad (x_2^I - x_2^I) = (x_2^P - x_2^P).
\]

If Assumption 2 is satisfied, then for each \(i \in \{1, 2, 3\}, \ y_{i|g^I|}^I < y_{i|g^P|}^P \).

Proof: Follows directly from the proof of Theorem

5. **Empirical Support**

In Sections 3 and 4, we offered two explanations – Theorem-Corollary 1 and Theorem-Corollary 2 – for why the (average) equilibrium merit aid offers within quality-local markets is negatively correlated with the quality of the competitors in these markets. We now offer empirical evidence that merit aid offers are indeed negatively correlated with university quality.

Four observations support our contention that top universities offer less merit aid. First, Harvard, Yale, Princeton, MIT, Yale, Columbia, Cornell, and Brown, all most-selective schools, report that they offer no merit aid.
Second, Ehrenberg and Monks (1999) demonstrate that when universities improve their rankings, they tend to offer less merit- and need-based financial aid. Using individual applicant data from 30 highly selective institutions for the academic years 1988–89 through 1998–99, they find that an improvement in rank of 10 places increases net tuition by approximately 4%.

Third, summary statistics of merit aid offers indicate that rank and merit aid offers are negatively correlated. For each university, *US News* reports the average merit aid award per student and the percentage of students who receive merit aid; we provide this information in Table A1. The mean of average merit aid award per student at top ranked (1–10) private universities is $5,327; that for private schools ranked 41–50 is $11,900. Furthermore, the mean percentage of students who receive merit aid from the private universities in the top decile is 2.2% and from the lowest decile in this set is 16.5%.

Fourth, Epple, Romano, and Sieg (2003) empirically find that schools with the highest list price tuition display negative correlations between candidates’ SAT scores and merit aid offers. Students with higher SAT scores tend to attend better universities, but the top universities tend to offer less merit aid. (Epple, Romano and Sieg (2003) suggest that this negative relationship may be due to variables omitted from their analysis. In their analysis, they employ a process that aggregates all top universities into effectively one university. Epple, Romano and Sieg therefore do not examine the dispersion of quality among these top universities.)

5. Discussion

In response to the increasingly fierce competition for rankings in the university marketplace, we seek to understand the role of merit aid. Our model and analysis provide an explanation based on quality-local competition for the striking heterogeneity in merit aid offers across universities and specifically for the observation that lower-ranked universities offer more merit aid than top universities.

5.1. Theoretical Linkages
Our model relates to research focused on price setting equilibria for quality-differentiated oligopolistic firms (e.g., Anderson et al., 1992; Anderson and de Palma, 2001; and Bronnenberg, 2008) and literature on strategic complements (Vives, 1999, 2005). Our work is most closely related to the Bronnenberg's (2008) analysis of quality positioning and pricing in the consumer package good industry where he shows that in a two-firm competition, the Nash equilibrium prices are convex in the perceived quality gap between the two firms' products. Our Theorem 1 and Corollary 1 demonstrate a similar result for the three-competitor case.

We build on previous theoretical analyses of university pricing (Epple, Romano, and Sieg, 2003, 2006; Epple, Romano, Sieg and Scarpa, 2006; and Rothschild and White 1995) that model university competition such that students are both consumers and inputs. Rothschild and White (1995) focus on whether tuition and merit aid decisions in a perfectly competitive education market would result in the efficient allocation of students among universities, whereas Epple, Romano, and Sieg (2003, 2006) construct a similar general equilibrium model but add the effect of household income on equilibrium prices. Rothschild and White (1995) suggest that optimal tuition less merit aid equals the student’s valuation of the university less the student’s contribution to the university. In this sense, their pricing equation is qualitatively similar to ours, but the models take different approaches to strategic interaction. They consider each university atomistic in the sense that a change in its quality does not affect its competitors’ merit aid offers. Their general equilibrium analysis thus is limited, because it fails to consider the effect of a change in the quality of a university on the quality and reactions of its competitors.

Epple, Romano, Sieg and Scarpa, 2006, examine university-applicant negotiations in which a university’s initial (financial aid) offer depends on the university’s expected value of the applicant. In this model, a competitor’s offer, due to its private information about the candidate, provides information to the university. The university then updates its expected value and chooses whether to
change its initial offer. In this model, the competitor is not a strategic. (Epple, Romano, Sieg and Scarpa, 2006, and Lang, 2007, empirically test this bargaining model.)

Our study of the effect of university quality on merit aid offers differs from all these prior analyses in that we make the strategic element of the Nash approach central.

5.2 Implications for University Marketing Practices

Our research offers practical insights for university marketing, specifically the management of its merit aid offers. Specifically, we established the following.

- A university’s quality, relative to the universities that have accepted a candidate, is a primary driver of the university’s merit aid offers. As the differences among the qualities of universities engaged in a quality-local competition increases, the average of the merit aid offers by the competitors to a particular candidate decreases. This result is consistent with the empirical results that the quality dispersion of schools involved in quality-local competition is increasing in school quality, and that better schools offer less merit aid. Note that by Lemma 2, relative, and not absolute quality, affects merit aid offers. That is, Ivy League universities offer less merit aid than do those in the Patriot League not because the Ivies are better, but rather because the dispersion of quality among the Ivies is greater than the quality dispersion among the Patriots.

- If candidates rejected by the university are close in quality to those the university accepts, then the university will make lower merit aid offers. In general, a university’s merit aid offers are decreasing in the quality difference between the candidates accepted by the university and its “safety” candidates.

- Each university’s optimal offer to a particular candidate, ceteris paribus, is strictly decreasing and strictly concave in the quality of the university. In this sense, in a quality-
local competition, better universities make greater adjustments in their merit aid offers to changes in their qualities.

In Appendix 3, we analyze the relationship between price elasticity and the equilibrium merit aid offers. In this analysis, we demonstrate that our results are robust to changes in the representative consumer’s price elasticity of demand.

For merit aid managers, the approach we used to develop the Nash equilibrium provides the structure for a viable pricing mechanism. In other words, universities should:

- operationalize the qualities of the university and its close competitors (i.e., set the x values);
- estimate candidate preference parameters (see Avery et al., 2004, and Avery and Hoxby, 2006, for logit analyses of candidate preferences);
- set monetary values for candidates (i.e., set the v values);
- place candidates into groups according to the candidates’ preferences for universities, and the university’s monetary values of the candidates;
- form conjectures about which universities have accepted the candidates and the offers these universities will make;
- determine optimal offers for the candidates in each of the groups.

In estimating a candidate’s utilities for various universities, schools can use their ranks, contacts between the universities and applicants (e.g., campus visits and letters), legacy status as well as other exogenous variables in estimating the candidate’s probability of attending the university and its competitors. Furthermore, the price elasticity of demand for university education can affect the equilibrium merit aid offers. One more point is that if the university does not believe its competitors will make Nash equilibrium offers, it must form beliefs about the merit aid offers its competitors will make (a topic of future research).

5.3. Extensions and Conclusion
Our model can be extended in several useful ways. We have been silent on the issue of need-based aid, an issue we sketch in Appendix 3. More work is needed there to enrich the model and analysis. And researchers could incorporate two types of uncertainty. That is, universities are uncertain about which schools have accepted a particular candidate as well as the amount of merit aid these universities offer. The inclusion of two or three admissions rounds could enrich the model. Many universities use two early admissions rounds, on the basis of their belief that if a student is accepted early, he or she commits to that university. With an early admissions practice, the university does not need to compete with other universities for that candidate, which means early admissions could add several interesting twists to our analysis. They reduce price competition, and risk-averse schools may be likely to lock in more students to avoid having to accept lower-quality students. In the competition to improve ranks, as Avery, Fairbanks, and Zeckhauser (2003) suggest, schools could lower their admissions standards during the early rounds, then reject more applicants during the regular admissions round, which reduces their acceptance rates, increases their apparent selectivity, and improves their overall ranking. With multiple rounds of admissions, an analysis of merit aid offers would become a full-blown revenue management problem.

Although we focus on the specifics of competition in the university marketplace, the essence of our analysis and model deals with quality-local competition in a production-limited environment in which customer quality varies but has some inherent value. Competition among other "exclusive" institutions, such as golf or country clubs or other special interest, limited admission institutions, whose potential members and customers differ in terms of attractiveness and social capital, might be clarified through adaptations of our framework (Sandler and Tschirhart, 1980). And emerging work extending the Customer Lifetime Value literature to the broader concept of Customer Relationship Value (see Kumar, Petersen and Leone, 2007, and Kumar, 2008, for example) provides frameworks for valuing customers with similar economic value quite differently.
The university marketplace is complex and of sufficient strategic importance to merit significant study on its own however. We hope this work adds to understanding of that marketplace, kindles additional discussion, and spurs further work in this and related domain.

References

Figure 1. Actual and Conjectured Average Merit Aid Offers By USNews Decile
Figure 2: The Admissions and Merit Aid Process

School

1. Candidate applies to schools
2. 1
3. 2

Candidate makes a belief about the merit aid offers its competitors will make to the candidate.

Candidate decides which university to attend.

Modeled

Each university i evaluates candidate attributes, formulates candidates’ utilities, and forms a belief about the merit aid offers its competitors will make to the candidate.

Each university i determines optimal merit aid offer for each candidate.

Candidate collects merit aid offers from schools and decides which university to attend.
Figure 3. Empirical and estimated power law distribution of the placement rates in top-five professional programs of the top-25 schools in the Wall Street Journal top-50 colleges and universities.
Table 1. Tests of the distribution of the placement rates by the Wall Street Journal top-50 colleges and universities in top-5 professional schools

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Critical Value (.05)</th>
<th>(p)-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2)</td>
<td>4.7968</td>
<td>0.0909</td>
</tr>
<tr>
<td>Likelihood ratio</td>
<td>13.7602*</td>
<td>0.0010</td>
</tr>
<tr>
<td>Anderson-Darling</td>
<td>0.6202</td>
<td>0.75</td>
</tr>
<tr>
<td>Lilliefors</td>
<td>0.0873</td>
<td>0.1266</td>
</tr>
</tbody>
</table>

*Significant at \(p < 0.05 \).

Table 2. Lehigh University and Competitors from top 25 in Terms of Head-to-Head Competition for Students

<table>
<thead>
<tr>
<th>SAT score range</th>
<th>Number of top-25 competitors with 75th percentile SAT score in range</th>
<th>Lehigh offered merit aid</th>
<th>Lehigh did not offer merit aid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choose either Lehigh or top-25 competitor</td>
<td>Ratio choosing Lehigh</td>
<td>Choose either Lehigh or top-25 competitor</td>
</tr>
<tr>
<td>1490-1600</td>
<td>0</td>
<td>0/0</td>
<td>0</td>
</tr>
<tr>
<td>1400-1480</td>
<td>9</td>
<td>218/218=0.30</td>
<td>487</td>
</tr>
<tr>
<td>1280-1390</td>
<td>16</td>
<td>262/451=0.58</td>
<td>1202</td>
</tr>
<tr>
<td>-1270</td>
<td>0</td>
<td>0/0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Lehigh University and Competitors ranked 26-50 in Terms of Head-to-Head Competition for Students

<table>
<thead>
<tr>
<th>SAT score range</th>
<th>Number of top-26-50 competitors with 75th percentile SAT score in range</th>
<th>Lehigh offered merit aid</th>
<th>Lehigh did not offer merit aid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choose either Lehigh or top-25 competitor</td>
<td>Ratio choosing Lehigh</td>
<td>Choose either Lehigh or top-25 competitor</td>
</tr>
<tr>
<td>1490-1600</td>
<td>4</td>
<td>66/66=0.20</td>
<td>66</td>
</tr>
<tr>
<td>1400-1480</td>
<td>9</td>
<td>27/94=0.29</td>
<td>125</td>
</tr>
<tr>
<td>1280-1390</td>
<td>16</td>
<td>64/93=0.69</td>
<td>358</td>
</tr>
<tr>
<td>-1270</td>
<td>1</td>
<td>4/5=0.80</td>
<td>32</td>
</tr>
</tbody>
</table>

Note: One competitor is excluded because university reports ACT and not SAT scores
Table A1. 2006 Merit Aid Details

<table>
<thead>
<tr>
<th>University</th>
<th>USNews Rank</th>
<th>Tuition 05-06</th>
<th>Average Merit Aid Award per Student who Received Aid:</th>
<th>Average Merit Aid per Student who Received Aid: Decile Average</th>
<th>Percent Awarded Merit Aid: Total Undergrads</th>
<th>Percent Awarded Merit Aid: Decile Average</th>
<th>Average Merit Aid per Student: Total Undergrads</th>
<th>Average Merit Aid per Student: Decile Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard</td>
<td>1</td>
<td>32,097</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Princeton</td>
<td>1</td>
<td>31,450</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yale</td>
<td>3</td>
<td>31,460</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>4</td>
<td>32,364</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Duke</td>
<td>5</td>
<td>32,410</td>
<td>22,277</td>
<td>5,327</td>
<td>4</td>
<td>2.2</td>
<td>891</td>
<td>343</td>
</tr>
<tr>
<td>Stanford</td>
<td>5</td>
<td>31,200</td>
<td>3,100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cal Tech</td>
<td>7</td>
<td>27,309</td>
<td>27,896</td>
<td>8</td>
<td>10</td>
<td>2232</td>
<td>2232</td>
<td>763</td>
</tr>
<tr>
<td>MIT</td>
<td>7</td>
<td>32,200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Columbia</td>
<td>9</td>
<td>31,472</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dartmouth</td>
<td>9</td>
<td>31,965</td>
<td>405</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WashingtonU</td>
<td>11</td>
<td>32,042</td>
<td>6,914</td>
<td>14</td>
<td>14</td>
<td>968</td>
<td>968</td>
<td>763</td>
</tr>
<tr>
<td>Northwestern</td>
<td>12</td>
<td>31,789</td>
<td>3,423</td>
<td>1</td>
<td>1</td>
<td>34</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Cornell</td>
<td>13</td>
<td>31,467</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JHU</td>
<td>14</td>
<td>31,620</td>
<td>13,016</td>
<td>6</td>
<td>6</td>
<td>781</td>
<td>781</td>
<td>0</td>
</tr>
<tr>
<td>Brown</td>
<td>15</td>
<td>32,974</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U. Chicago</td>
<td>15</td>
<td>31,629</td>
<td>11,260</td>
<td>11</td>
<td>11</td>
<td>1239</td>
<td>1239</td>
<td>0</td>
</tr>
<tr>
<td>Rice</td>
<td>17</td>
<td>20,160</td>
<td>5,335</td>
<td>20</td>
<td>20</td>
<td>1067</td>
<td>1067</td>
<td>0</td>
</tr>
<tr>
<td>Notre Dame</td>
<td>18</td>
<td>31,542</td>
<td>7,630</td>
<td>2</td>
<td>2</td>
<td>153</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>Vanderbilt</td>
<td>18</td>
<td>31,700</td>
<td>17,758</td>
<td>13</td>
<td>13</td>
<td>2309</td>
<td>2309</td>
<td>0</td>
</tr>
<tr>
<td>Emory</td>
<td>20</td>
<td>30,794</td>
<td>18,056</td>
<td>6</td>
<td>6</td>
<td>1083</td>
<td>1083</td>
<td>0</td>
</tr>
<tr>
<td>CMU</td>
<td>22</td>
<td>32,044</td>
<td>11,721</td>
<td>9</td>
<td>9</td>
<td>1055</td>
<td>1055</td>
<td>889</td>
</tr>
<tr>
<td>Georgetown</td>
<td>23</td>
<td>32,199</td>
<td>3,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tufts</td>
<td>27</td>
<td>32,621</td>
<td>500</td>
<td>5,682</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Wake Forest</td>
<td>27</td>
<td>30,210</td>
<td>9,685</td>
<td>10</td>
<td>10</td>
<td>968</td>
<td>968</td>
<td>0</td>
</tr>
<tr>
<td>USC</td>
<td>30</td>
<td>32,008</td>
<td>12,702</td>
<td>19</td>
<td>19</td>
<td>2413</td>
<td>2413</td>
<td>0</td>
</tr>
<tr>
<td>Lehigh</td>
<td>32</td>
<td>31,420</td>
<td>13,027</td>
<td>7</td>
<td>7</td>
<td>912</td>
<td>912</td>
<td>0</td>
</tr>
<tr>
<td>Brandeis</td>
<td>34</td>
<td>32,500</td>
<td>17,454</td>
<td>22</td>
<td>22</td>
<td>3840</td>
<td>3840</td>
<td>1878</td>
</tr>
<tr>
<td>Case</td>
<td>37</td>
<td>28,678</td>
<td>12,650</td>
<td>30</td>
<td>30</td>
<td>3795</td>
<td>3795</td>
<td>0</td>
</tr>
<tr>
<td>Western</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York U.</td>
<td>37</td>
<td>31,690</td>
<td>6,924</td>
<td>11</td>
<td>11</td>
<td>762</td>
<td>762</td>
<td>0</td>
</tr>
<tr>
<td>Boston C.</td>
<td>40</td>
<td>31,438</td>
<td>8,051</td>
<td>1</td>
<td>1</td>
<td>81</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>Rensselaer</td>
<td>43</td>
<td>31,857</td>
<td>14,700</td>
<td>16</td>
<td>16</td>
<td>2352</td>
<td>2352</td>
<td>2290</td>
</tr>
<tr>
<td>Tulane</td>
<td>43</td>
<td>32,946</td>
<td>17,020</td>
<td>31</td>
<td>31</td>
<td>5276</td>
<td>5276</td>
<td>0</td>
</tr>
<tr>
<td>Yeshiva</td>
<td>46</td>
<td>26,100</td>
<td>7,741</td>
<td>3</td>
<td>3</td>
<td>232</td>
<td>232</td>
<td>0</td>
</tr>
<tr>
<td>Syracuse</td>
<td>50</td>
<td>28,285</td>
<td>8,140</td>
<td>16</td>
<td>16</td>
<td>1302</td>
<td>1302</td>
<td>0</td>
</tr>
</tbody>
</table>

Table A2. *Wall Street Journal* 09/25/2003 ranking of the top-50 colleges and universities by percentage of graduating classes placed in the top-five business, law, and medical schools.

<table>
<thead>
<tr>
<th>Rank</th>
<th>School</th>
<th>Class Size</th>
<th># Attending</th>
<th>Percentage of Class Attending</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harvard University</td>
<td>1,666</td>
<td>358</td>
<td>21.49%</td>
</tr>
<tr>
<td>2</td>
<td>Yale University</td>
<td>1,286</td>
<td>231</td>
<td>17.96%</td>
</tr>
<tr>
<td>3</td>
<td>Princeton University</td>
<td>1,103</td>
<td>174</td>
<td>15.78%</td>
</tr>
<tr>
<td>4</td>
<td>Stanford University</td>
<td>1,692</td>
<td>181</td>
<td>10.70%</td>
</tr>
<tr>
<td>5</td>
<td>Williams College</td>
<td>519</td>
<td>47</td>
<td>9.06%</td>
</tr>
<tr>
<td>6</td>
<td>Duke University</td>
<td>1,615</td>
<td>139</td>
<td>8.61%</td>
</tr>
<tr>
<td>7</td>
<td>Dartmouth College</td>
<td>1,101</td>
<td>93</td>
<td>8.45%</td>
</tr>
<tr>
<td>8</td>
<td>MIT</td>
<td>1,187</td>
<td>92</td>
<td>7.75%</td>
</tr>
<tr>
<td>9</td>
<td>Amherst College</td>
<td>431</td>
<td>33</td>
<td>7.66%</td>
</tr>
<tr>
<td>10</td>
<td>Swarthmore College</td>
<td>336</td>
<td>25</td>
<td>7.44%</td>
</tr>
<tr>
<td>11</td>
<td>Columbia University</td>
<td>1,652</td>
<td>118</td>
<td>7.14%</td>
</tr>
<tr>
<td>12</td>
<td>Brown University</td>
<td>1,506</td>
<td>98</td>
<td>6.51%</td>
</tr>
<tr>
<td>13</td>
<td>Pomona College</td>
<td>362</td>
<td>23</td>
<td>6.35%</td>
</tr>
<tr>
<td>14</td>
<td>University of Chicago</td>
<td>948</td>
<td>59</td>
<td>6.22%</td>
</tr>
<tr>
<td>15</td>
<td>Wellesley College</td>
<td>585</td>
<td>35</td>
<td>5.98%</td>
</tr>
<tr>
<td>16</td>
<td>University of Pennsylvania</td>
<td>2,785</td>
<td>153</td>
<td>5.49%</td>
</tr>
<tr>
<td>17</td>
<td>Georgetown University</td>
<td>1,666</td>
<td>85</td>
<td>5.10%</td>
</tr>
<tr>
<td>18</td>
<td>Haverford College</td>
<td>291</td>
<td>13</td>
<td>4.47%</td>
</tr>
<tr>
<td>19</td>
<td>Bowdoin College</td>
<td>404</td>
<td>16</td>
<td>3.96%</td>
</tr>
<tr>
<td>20</td>
<td>Rice University</td>
<td>764</td>
<td>29</td>
<td>3.80%</td>
</tr>
<tr>
<td>21</td>
<td>Northwestern University</td>
<td>1,978</td>
<td>73</td>
<td>3.69%</td>
</tr>
<tr>
<td>22</td>
<td>Claremont McKenna College</td>
<td>271</td>
<td>10</td>
<td>3.69%</td>
</tr>
<tr>
<td>23</td>
<td>Middlebury College</td>
<td>660</td>
<td>24</td>
<td>3.64%</td>
</tr>
<tr>
<td>24</td>
<td>Johns Hopkins University</td>
<td>1,272</td>
<td>45</td>
<td>3.54%</td>
</tr>
<tr>
<td>25</td>
<td>Cornell University</td>
<td>3,565</td>
<td>115</td>
<td>3.23%</td>
</tr>
<tr>
<td>26</td>
<td>Bryn Mawr College</td>
<td>310</td>
<td>9</td>
<td>2.90%</td>
</tr>
<tr>
<td>27</td>
<td>Wesleyan University</td>
<td>731</td>
<td>21</td>
<td>2.87%</td>
</tr>
<tr>
<td>28</td>
<td>Cal Tech</td>
<td>249</td>
<td>7</td>
<td>2.81%</td>
</tr>
<tr>
<td>29</td>
<td>Morehouse College</td>
<td>501</td>
<td>14</td>
<td>2.79%</td>
</tr>
<tr>
<td>30</td>
<td>University of Michigan</td>
<td>5,720</td>
<td>156</td>
<td>2.73%</td>
</tr>
<tr>
<td>31</td>
<td>New College of Florida</td>
<td>113</td>
<td>3</td>
<td>2.65%</td>
</tr>
<tr>
<td>32</td>
<td>Vassar College</td>
<td>581</td>
<td>15</td>
<td>2.58%</td>
</tr>
<tr>
<td>33</td>
<td>University of Virginia</td>
<td>3,213</td>
<td>82</td>
<td>2.55%</td>
</tr>
<tr>
<td>34</td>
<td>US Military Academy</td>
<td>966</td>
<td>23</td>
<td>2.38%</td>
</tr>
<tr>
<td>35</td>
<td>University of Notre Dame</td>
<td>1,985</td>
<td>45</td>
<td>2.27%</td>
</tr>
<tr>
<td>36</td>
<td>Emory University</td>
<td>1,509</td>
<td>33</td>
<td>2.19%</td>
</tr>
<tr>
<td>37</td>
<td>US Military Academy</td>
<td>986</td>
<td>21</td>
<td>2.13%</td>
</tr>
<tr>
<td>38</td>
<td>Macalester College</td>
<td>406</td>
<td>8</td>
<td>1.97%</td>
</tr>
<tr>
<td>39</td>
<td>Brandeis University</td>
<td>815</td>
<td>16</td>
<td>1.96%</td>
</tr>
<tr>
<td>40</td>
<td>Bates College</td>
<td>417</td>
<td>8</td>
<td>1.92%</td>
</tr>
<tr>
<td>41</td>
<td>U. California, Berkeley</td>
<td>6,198</td>
<td>118</td>
<td>1.90%</td>
</tr>
<tr>
<td>42</td>
<td>Barnard College</td>
<td>588</td>
<td>11</td>
<td>1.87%</td>
</tr>
<tr>
<td>43</td>
<td>Trinity College</td>
<td>485</td>
<td>9</td>
<td>1.86%</td>
</tr>
<tr>
<td>44</td>
<td>Grinnell College</td>
<td>337</td>
<td>6</td>
<td>1.78%</td>
</tr>
<tr>
<td>45</td>
<td>Tufts University</td>
<td>1,246</td>
<td>22</td>
<td>1.77%</td>
</tr>
<tr>
<td>46</td>
<td>Colby College</td>
<td>471</td>
<td>8</td>
<td>1.70%</td>
</tr>
<tr>
<td>47</td>
<td>Washington University</td>
<td>1,709</td>
<td>29</td>
<td>1.70%</td>
</tr>
<tr>
<td>48</td>
<td>Washington and Lee</td>
<td>413</td>
<td>7</td>
<td>1.69%</td>
</tr>
<tr>
<td>49</td>
<td>Case Western</td>
<td>729</td>
<td>12</td>
<td>1.65%</td>
</tr>
<tr>
<td>50</td>
<td>Reed College</td>
<td>304</td>
<td>5</td>
<td>1.64%</td>
</tr>
</tbody>
</table>
Appendix 2: Proofs

Proof of Lemma 1

By (2), \(q_i > q_j \) if and only if

\[
(x_i + y_{iq}) > (x_j + y_{jq}). \tag{A1}
\]

By (7), \(q_i > q_j \) if and only if

\[
\frac{w_p}{w_r}(v_{ig} - v_{io}) - y_{ig} > \frac{w_p}{w_r}(v_{jg} - v_{jo}) - y_{jg}. \tag{A2}
\]

From (A1) and (A2), \(q_i > q_j \) if and only if

\[
x_i + \frac{w_p}{w_r}(v_{ig} - v_{io}) > x_j + \frac{w_p}{w_r}(v_{jg} - v_{jo}). \tag{A3}
\]

Q.E.D.

We use Lemmas A1 and A2 in the proof of Theorem 1. In Lemma A1, if a university’s quality improves, it should offer less merit aid to a particular candidate, and the magnitude of the change in the university’s optimal merit aid offer increases with the higher quality of the university. That is, \textit{ceteris paribus}, a university’s optimal merit aid to a particular candidate strictly decreases and is strictly concave in its quality. In Lemma A2, if a competitor’s quality improves, the university should offer more merit aid. That is, \textit{ceteris paribus}, a university’s optimal merit aid to a particular candidate increases with the quality of the competitor.

Lemma A1 Ceteris paribus, the change in university i’s optimal offer with respect to a change in its own quality is

\[
\frac{\partial y^*_{ig}}{\partial x_i} (x_i, x_j + y_j, x_k + y_k) = -q^*_{ig} (x_i + y_i, x_j + y_j, x_k + y_k). \tag{A4}
\]
Lemma A2 Ceteris paribus, the change in university i’s optimal offer with respect to a change in university j’s quality or merit aid offer is
\[
\frac{\partial y^*_i}{\partial y_j} = \frac{\partial y^*_i}{\partial x_j} = \frac{q_{ig}(x_i + y_i, x_j + y_j, x_k + y_k)}{1 - q_{ig}(x_i + y_i, x_j + y_j, x_k + y_k)} q_{ig}(x_i + y_i, x_j + y_j, x_k + y_k).
\] (A5)

Proof of Lemmas A1 and A2

Substituting (5) into (6), we derive the strictly quasi-concave expected score function:
\[
E[\sigma_i] = w_p \left(\sum_{g \in M_i} v_{ig} q_i(x_i + y_{ig}) + v_{io} \left(z_i - \sum_{g \in M_i} q_i(x_i + y_{ig}) \right) \right) + w_r \left(B_i - \sum_{g \in M_i} q_i(x_i + y_{ig}) y_{ig} \right).
\] (A6)

The optimization program is
\[
\max_{y_{ig}, v_{ig} \in M_i} E[\sigma_i].
\] (A7)

In addition, the first-order conditions, which are necessary and sufficient for a maximum, are:
\[
\frac{\partial E[\sigma_i]}{\partial y_{ig}} = 0 = \left[w_p (v_{ig} - v_{io}) - w_r y_{ig} \right] \frac{\partial q_i}{\partial y_{ig}} - w_r q_i \quad \text{for each } g \in M_i.
\] (A8)

For the logit model, we have
\[
\frac{\partial q_i}{\partial y_{ig}} = \frac{q_i(1 - q_i)}{\mu}.
\] (A9)

Substituting (A9) into (A8), we obtain the following equation, which we label f_{ig}:
\[
f_{ig} = 0 = \left[w_p (v_{ig} - v_{io}) - w_r y_{ig} \right] \frac{(1 - q_i)}{\mu} - w_r.
\] (A10)

For the logit model, we have:
\[
\frac{\partial q_i}{\partial x_i} = \frac{q_i(1 - q_i)}{\mu},
\] (A11)

and
\[
\frac{\partial q_i}{\partial x_j} = \frac{\partial q_j}{\partial y_{ig}} = - \frac{q_i q_j}{\mu}.
\] (A12)
Taking the differential of (A10) with respect to \(y_{ig} \), \(y_{ig} \), \(y_{kg} \), \(x_i \), \(x_j \), and \(x_k \) and using (A9), (A11), and (A12),

\[
d f_{ig} = 0 = \left\{ w_p \left(v_{ig} - v_{io} \right) - w_r y_{ig} \left(-q_i \left(1 - q_i \right) \mu^2 \right) - w_r \frac{1 - q_i}{\mu} \right\} dy_{ig} \\
+ \left(w_p \left(v_{ig} - v_{io} \right) - w_r y_{ig} \right) \left(-q_i \left(1 - q_i \right) \mu^2 \right) dx_i \\
+ \left(w_p \left(v_{ig} - v_{io} \right) - w_r y_{ig} \right) \left(q_i q_j \mu^2 \right) \left(dx_j + dy_{js} \right) \\
+ \left(w_p \left(v_{ig} - v_{io} \right) - w_r y_{ig} \right) \left(q_i q_k \mu^2 \right) \left(dx_k + dy_{ks} \right),
\]

(A13)

Solving (A10) for \(w_p \left(v_{ig} - v_{io} \right) - w_r y_{ig} \) and substituting into (A13),

\[
d f_{ig} = 0 = w_r \mu \left[-dy_{ig} - q_i dx_i + q_i q_j \left(dx_j + dy_{js} \right) + q_i q_k \left(dx_k + dy_{ks} \right) \right]. \tag{A14}
\]

Therefore,

\[
\frac{\partial y_{ig}}{\partial x_i} = -q_i; \tag{A15}
\]

and

\[
\frac{\partial y_{ig}}{\partial x_j} = q_i - q_j. \tag{A16}
\]

Q.E.D.

Proof of Theorem 1

Taking the total differentials of the first-order conditions (A10) and using Lemmas A1 and A2 and Cramer’s rule, we have:
\[
\frac{dy_{ig}^*}{dx_i} = \begin{vmatrix}
q_i & \frac{q_i q_j}{1-q_i} & \frac{q_i q_k}{1-q_i} \\
\frac{q_j q_i}{1-q_j} & -1 & \frac{q_j q_k}{1-q_j} \\
\frac{q_k q_i}{1-q_k} & \frac{q_j q_k}{1-q_k} & -1
\end{vmatrix}
\] \hfill (A17)

and

\[
\frac{dy_{ig}^*}{dx_i} = \begin{vmatrix}
-1 & \frac{q_i q_j}{1-q_i} & \frac{q_i q_k}{1-q_i} \\
\frac{q_j q_i}{1-q_j} & -1 & \frac{q_j q_k}{1-q_j} \\
\frac{q_k q_i}{1-q_k} & \frac{q_j q_k}{1-q_k} & -1
\end{vmatrix}
\] \hfill (A18)

To evaluate the sign of \(d\left(y_{ig}^* + y_{ig}^* + y_{ig}^*\right)/dx_i \), we alter (A18) by changing the responses

\[
\frac{\partial y_{ig}^*}{\partial x_i} = \frac{\partial y_{ig}^*}{\partial y_{ig}} \quad \text{and writing them as}
\]

\[
\frac{\partial y_{ig}^*}{\partial x_i} = \frac{\partial y_{ig}^*}{\partial y_{ig}} = \frac{q_j}{1-q_i} \cdot q_i.
\] \hfill (A19)

Doing so simplifies our determination of the sign of \(d\left(y_{ig}^* + y_{ig}^* + y_{ig}^*\right)/dx_i \). We then rewrite equation A18 as
\[
\left. \begin{array}{ccc}
-1 & q_i & q_i q_k \\ q_i q_j & -q_i q_j & q_i q_k \\ 1 - q_i & 1 - q_i & 1 - q_i \\
q_i q_k & q_i q_k & -1 \\
1 - q_i & 1 - q_i & -1 \\
\end{array} \right].
\]

In the remainder of the proof, we evaluate \(d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \) and show that

\[
\text{sign}\left[d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \right] = \text{sign}\left[d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \right].
\]

We begin by evaluating \(d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \).

To simplify the appearance of \(d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \), without loss of generality, we set \(q_k = \alpha q_j \) for \(\alpha \in (0,1] \). Using \(1 = q_i + q_j + \alpha q_j \) and solving for \(q_j \), we have \(q_j = (1 - q_i)/(1 + \alpha) \). Evaluating (A17) and (A20), using the two equalities — \(q_k = \alpha q_j \) and \(q_j = (1 - q_i)/(1 + \alpha) \) — we write

\[
d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i \text{ as}
\]

\[
\frac{\alpha q_i \left(1 + \alpha^2 + 3 \alpha + \alpha q_i^2 + \alpha^2 q_i^2 + q_i^2 - 8 \alpha q_i - 4 q_i - 4 \alpha^2 q_i \right)}{1 + 4 \alpha + 5 \alpha^2 + 4 \alpha^3 + \alpha^4 + 2 \alpha^2 q_i - 5 \alpha^2 q_i^2 - q_i^2 - 2 \alpha q_i^2 + 2 \alpha^2 q_i^3 - 2 \alpha^3 q_i^2 - \alpha^4 q_i^2}.
\]

To evaluate (A21), we evaluate the denominator \(\text{den} \) and the numerator \(\text{num} \) separately.

We now show that \(\text{den} > 0 \) for any \(\alpha \in (0,1] \) and \(q_i \in (0,1) \), because \(\text{den} \) is strictly concave with respect to \(q_i \) for \(q_i \in (0,1) \), and \(\text{den} > 0 \) if either \(q_i = 0 \) or \(q_i = 1 \). As a demonstration of concavity,

\[
\frac{d^2 \text{den}}{dq_i^2} = -\left[2 + 4 \alpha + 10 \alpha^2 + 4 \alpha^3 + 2 \alpha^4 - 12 \alpha^2 q_i \right] < 0 \text{ for any } \alpha \in (0,1] \text{ and } q_i \in (0,1). \]
Next, if \(q_i = 0 \), then \(\text{den} = 1 + 4\alpha + 5\alpha^2 + 4\alpha^3 + \alpha^4 > 0 \); if \(q_i = 1 \), then \(\text{den} = 2\alpha + 4\alpha^2 + 2\alpha^3 > 0 \).

Therefore, \(\text{den} > 0 \).

Because the denominator of (A21) is positive, its sign depends on the sign of \(\text{num} \). Evaluating \(\text{num} \), we show that it is strictly concave with respect to \(q_i \) for \(q_i \in [0,1] \) and has three roots. As a demonstration of concavity,

\[
\frac{d^2 \text{num}}{dq_i^2} = \alpha [-(8\alpha^2 + 16\alpha + 8) + 6q_i(\alpha^2 + \alpha + 1)] < 0 \text{ for any } \alpha \in (0,1] \text{ and } q_i \in [0,1]. \tag{A23}
\]

The three roots of the third-order polynomial \(\text{num} \) with respect to \(q_i \) are:

(i) \(0 \);

(ii) \(q_i \approx \frac{2(1 + \alpha)^2 - ((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}}{(\alpha^2 + \alpha + 1)} \); and

(iii) \(q_i \approx \frac{2(1 + \alpha)^2 + ((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}}{(\alpha^2 + \alpha + 1)} \).

The third root, \(\tilde{q}_i \), is greater than 1 for any \(\alpha \in (0,1] \). According to the concavity of \(\text{num} \) in \(q_i \in [0,1] \) and the values of the three roots, for any \(\alpha \in (0,1] \), \(\text{num} > 0 \) if \(q_i < \tilde{q}_i \); \(\text{num} = 0 \) if \(q_i = \tilde{q}_i \); and \(\text{num} < 0 \) if \(q_i > \tilde{q}_i \).

Thus, if \(x_i \) is sufficiently small, so that in equilibrium \(q_i \in (0,\tilde{q}_i) \), then

\[
d(\hat{y}_{ij} + \hat{y}_{ie} + \hat{y}_{jk})/dx_i > 0 \; \text{and if } x_i \; \text{is sufficiently large, so that in equilibrium } q_i \in (\tilde{q}_i,1) \text{, then}
\]

\[
d(\hat{y}_{ij} + \hat{y}_{ie} + \hat{y}_{jk})/dx_i < 0.
\]

To complete the proof, we need to establish that if \(x_i < \min\{x_j, x_k\} \), then \(q_i \in (0,\tilde{q}_i) \) and that if \(x_i > \max\{x_j, x_k\} \), then \(q_i \in (\tilde{q}_i,1) \). From Lemma 1 (i.e., \(x_j > x_k \Leftrightarrow q_j > q_k \)) and the requirement that \(\alpha \in (0,1] \), we note that \(x_j \geq x_k \). If \(x_i < x_k \) and \(q_i < q_k \), then \(q_i \in (0,\tilde{q}_i) \); however, if \(x_i > x_j \) and \(q_i > q_j \), then \(q_i \in (\tilde{q}_i,1) \). We examine two cases.

Case 1: University \(i \) is the best university, \(x_i > \max\{x_j, x_k\} \).
If $x_i > \max\{x_j, x_k\}$, by Lemma 1, $q_i > \max\{q_j, q_k\}$, so we exaggerate the positive responses by the competitors. That is,

$$\frac{\partial y_{ij}}{\partial x_i} = \frac{\partial y_{ij}}{\partial y_{ig}} = \frac{q_j}{1 - q_i} q_i > \frac{q_j}{1 - q_i} q_i = \frac{\partial y_{ig}^*}{\partial x_i} = \frac{\partial y_{ig}^*}{\partial y_{ig}} > 0.$$ \hspace{1cm} (A25)

By exaggerating $\partial y_{ij} / \partial x_i$ and $\partial y_{ij} / \partial y_{ig}$ without changing y_{ig}^*, the exaggeration has only a second-order (i.e., very small) effect on $\partial y_{ig}^* / \partial x_i$. If $x_i > \max\{x_j, x_k\}$ and $d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right) / dx_i < 0$, then $d\left(y_{ig}^* + y_{jg}^* + y_{kg}^*\right) / dx_i < 0$. Figure A1 shows both $d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right) / dx_i$ and $d\left(y_{ig}^* + y_{jg}^* + y_{kg}^*\right) / dx_i$ for the case in which $x_i > \max\{x_j, x_k\}$.

[Insert Figure A1 about here]

Using $1 = q_i + q_j + \alpha q_j$, we derive that $q_i > q_j$ (and by Lemma 1 $x_i > x_j$) if and only if $q_i > 1/(2 + \alpha)$. Therefore, we require that if $q_i > 1/(2 + \alpha)$, then $q_i \in (\bar{q}_i, 1)$. Equivalently, we need $1/(2 + \alpha) > \bar{q}_i$. Using (A24), we find

$$\frac{1}{2 + \alpha} - \bar{q}_i = \frac{1}{2 + \alpha} - \frac{2(1 + \alpha)^2 - (3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}}{\left(\alpha^2 + \alpha + 1\right)} \hspace{1cm} (A26)$$

$$= \frac{(1 + 2\alpha)(\alpha^2 + 3\alpha + 3) + (2 + \alpha)((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}}{\left(\alpha^2 + \alpha + 1\right)(2 + \alpha)}.$$

Because the denominator of r.h.s. of the second line of (A24) is positive,

$$\text{sign}\left(\frac{1}{2 + \alpha} - \bar{q}_i\right) = \text{sign}\left(-\left(1 + 2\alpha\right)(\alpha^2 + 3\alpha + 3) + (2 + \alpha)((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}\right) \hspace{1cm} (A27)$$

Evaluating the r.h.s. of (A27), we note that

$$\left(-\left(1 + 2\alpha\right)(\alpha^2 + 3\alpha + 3) + (2 + \alpha)((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}\right) > 0$$

if and only if

$$\frac{\alpha^2 + 4\alpha + 4}{4\alpha^2 + 4\alpha + 1} > \frac{\alpha^2 + 3\alpha + 3}{3\alpha + 3\alpha + 1}.$$ \hspace{1cm} (A28)
We have that for any \(\alpha \in (0,1) \), (A28) holds (with a strict equality if \(\alpha = 1 \)).

Case 2: University \(i \) is the lowest ranked university, \(x_i < \min \{x_j, x_k\} \).

If \(x_i < \min \{x_j, x_k\} \), then \(q_i < \min \{q_j, q_k\} \). Hence, we shade the positive response by the competitor.

That is,

\[
\frac{\partial \tilde{y}_{ig}}{\partial x_i} = \frac{\partial \tilde{y}_{jr}}{\partial x_j} = \frac{q_j}{1 - q_j} < \frac{q_j}{1 - q_j} - \frac{\partial y_{ig}^*}{\partial x_i} = \frac{\partial y_{jr}^*}{\partial x_j} > 0.
\]

(A29)

By shading these positive responses, if \(x_i < \min \{x_j, x_k\} \) and \(d\left(y_{ig}^* + \tilde{y}_{jr} + \tilde{y}_{kr}\right)/dx_i > 0 \), then

\[
d\left(y_{ig}^* + y_{jr}^* + y_{kr}^*\right)/dx_i > 0.
\]

Figure A2 shows both \(d\left(y_{ig}^* + \tilde{y}_{jr} + \tilde{y}_{kr}\right)/dx_i \) and \(d\left(y_{ig}^* + y_{jr}^* + y_{kr}^*\right)/dx_i \) for the case in which \(x_i < \min \{x_j, x_k\} \).

[Insert Figure A2 about here]

Using \(1 = q_i + q_j + \alpha q_j \) and \(q_k = \alpha q_j \), we derive that \(q_i < q_k \) (and by Lemma 1, \(x_i < x_k \)) if and only if \(q_i < \alpha/(1 + 2\alpha) \). Therefore, we require if \(q_i < \alpha/(1 + 2\alpha) \), then \(q_i \in (0, \bar{q}_i) \). Equivalently, we need \(\bar{q}_i - \alpha/(1 + 2\alpha) > 0 \). Using (A24), we find

\[
\bar{q}_i - \frac{\alpha}{1 + 2\alpha} = \frac{2(1 + \alpha)^2 - (3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))}{(\alpha^2 + \alpha + 1)} - \frac{\alpha}{1 + 2\alpha}
\]

(A30)

Because the denominator of r.h.s. of the second line of (A30) is positive,

\[
sign\left(\bar{q}_i - \frac{\alpha}{1 + 2\alpha}\right) = sign\left(2 + \alpha\right)(\alpha^2 + 3\alpha + 3) - (1 + 2\alpha)((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2}\). \]

(A31)

Evaluating the r.h.s. of (A31), we note

\[
\left(2 + \alpha\right)(\alpha^2 + 3\alpha + 3) - (1 + 2\alpha)((3\alpha^2 + 3\alpha + 1)(\alpha^2 + 3\alpha + 3))^{1/2} > 0
\]

(A32)
if and only if (A28) holds. Again, for any $\alpha \in (0,1)$, equation A28 holds (with a strict equality if $\alpha = 1$).

Q.E.D.

Proof of Lemma 2

If $(x_i - x_j) = (\hat{x}_i - \hat{x}_j)$ for each $i, j \in \{1,2,3\}$, then from (2),

$$q_i(x_1 + y_{1g}, x_2 + y_{2g}, x_3 + y_{3g}) = q_i(\hat{x}_1 + y_{1g}, \hat{x}_2 + y_{2g}, \hat{x}_3 + y_{3g}) \quad (A33)$$

For the two quality vectors (x_1, x_2, x_3) and $(\hat{x}_1, \hat{x}_2, \hat{x}_3)$, the effect of y_{ig} on the expected scores is identical. That is, for each university i and each candidate g:

$$\partial E\left[\sigma_i(x_1 + y_{1g}, x_2 + y_{2g}, x_3 + y_{3g})\right] = \left[w_p (v_i - v_{io}) - w_{rg} y_{ig}\right] \frac{1 - q_i(x_1 + y_{1g}, x_2 + y_{2g}, x_3 + y_{3g})}{\mu} - w_r$$

(A34)

With these identical derivatives, for each i and each g, $y^*_g(x_1, x_2, x_3) = y^*_g(\hat{x}_1, \hat{x}_2, \hat{x}_3)$.

Q.E.D.

Proof of Theorem 2

Using (A10),

$$\frac{\partial y^*_g}{\partial (v_{ig} - v_{io})} = w_p (1 - q_i) > 0 \quad \text{(A35)}$$

As we state in (A12), for any $j, k \in \{1,2,3\}$,

$$\frac{\partial q_j}{\partial y_{kg}} = \frac{q_j q_k}{\mu} > 0 \quad \text{(A36)}$$
The direct effect, as expressed in (A35), of an increase in \((v_{ig} - v_{i\alpha})\) on \(y^*_i\) is positive. All secondary effects, as expressed in (A36), of an increase in one university’s merit aid offer on its competitors’ merit aid offers is positive. Therefore, for each \(j \in \{1,2,3\}\), in equilibrium,

\[
\frac{\partial y^*_{ijg}}{\partial (v_{ig} - v_{i\alpha})} > 0.
\]

(A37)

Q.E.D.
Figure A1. University i is the best university; effect of an increase in university i’s quality on the sum of its merit aid offers. If $x_i > \max\{x_j, x_k\}$, then

$$d(y^*_{ig} + y^*_{jk} + y^*_{kg})/dx_i < d(y^*_{ig} + \hat{y}_{jb} + \hat{y}_{kb})/dx_i < 0.$$
Figure A2. University i is the worst university; effect of an increase in university i’s quality on the sum of its merit aid offers. If $x_i < \min\{x_j, x_k\}$, then

$$d\left(y_{ig}^* + y_{jg}^* + y_{kg}^*\right)/dx_i > d\left(y_{ig}^* + \hat{y}_{jg} + \hat{y}_{kg}\right)/dx_i > 0.$$
Appendix 3: Extension to Merit and Need-Based Financial Aid

Universities offer need-based financial aid in the form of grants, work study or loans. To the applicants, grants are most attractive. To the universities, grants are most costly. Universities with limited financial aid budgets then must choose how to allocate limited grant budgets among need-based financial aid applicants. One possible strategy is to offer grants to the most attractive need-based aid applicants and loans and work study to the remainder. By pursuing this strategy, universities are incorporating merit into need-based aid decisions. (See Lang, 2007, for a description and evidence of this practice.) For universities that offer grants to better need-based aid candidates, but do not offer merit aid, the question arises as to why these universities do not offer merit aid to wealthy families while effectively offering merit aid to families with financial need.

We suggest that this practice is a combination of the university’s desire to attract their best candidates and to practice third-degree price discrimination. To examine third-degree price discrimination by segmenting markets according to family wealth, we assume that the merit aid elasticity of demand is decreasing in household wealth. We extend our model to include merit aid elasticity of demand into the utility function by introducing a parameter, \(\alpha \), which measures the marginal willingness-to-pay for university quality. The utility function is

\[
 u_{ig} = x_i + \alpha y_{ig} + \varepsilon_i ,
\]

(A3.1)

where \(y_{ig} \) is the sum of merit and need-based financial aid. In the logit choice model, for this utility function, the merit aid elasticity of demand for university \(i \) is

\[
 \left(\frac{\partial q_{ig}^*}{\partial y_{ig}} \right) \left(\frac{y_{ig}}{q_{ig}^*} \right) = \alpha y_{ig} \left(1 - q_{ig}^* \right),
\]

(A3.2)

which is increasing in \(\alpha \). Hence, the optimal pricing rule,

\[
 y_{ig}^* = \frac{W_p}{W_r} \left(\bar{v}_{ig} - \bar{\varepsilon}_{io} \right) - \frac{\mu}{\alpha} \frac{1}{1 - q_i \left(\bar{x}_i + \alpha \bar{y}_{ig} + x_j + \alpha \bar{y}_{jg} + x_k + \alpha \bar{y}_{kg} \right)},
\]

(A3.3)
indicates that, holding \(y_{jg} \) and \(y_{kg} \) constant, university \(i \)'s optimal merit aid offer is increasing in the merit aid elasticity of demand (i.e., \(\alpha \)) and also increasing in the value of the candidate, \((v_{ig} - \bar{v}_w) \).

Hence, holding constant the value of the candidate, universities may offer merit aid, as need-based grants, to families with need, while offering no merit aid to wealthy families.

In spite of this result, the fact remains that better-ranked universities offer no merit aid to wealthy families while other universities do. In general, Theorems 1 and 2 hold for each fixed value of \(\alpha \) (i.e., particular merit aid elasticity of demand). Hence, our Section 3 analysis explains why better-ranked universities offer less merit aid to each particular merit aid elasticity group (or family wealth level) than do other universities.